Anisotropic conformal infinity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic Conformal Infinity

We generalize Penrose’s notion of conformal infinity of spacetime, to situations with anisotropic scaling. This is relevant not only for Lifshitz-type anisotropic gravity models, but also in standard general relativity and string theory, for spacetimes exhibiting a natural asymptotic anisotropy. Examples include the Lifshitz and Schrödinger spaces (proposed as AdS/CFT duals of nonrelativistic f...

متن کامل

Conformal Infinity

The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physi...

متن کامل

Conformal treatment of infinity

In the late 1950’s F. A. E. Pirani, A. Trautman, R. K. Sachs, H. Bondi, E. T. Newman, R. Penrose and others began exploring possibilities to establish in Einstein’s nonlinear theory a notion of gravitational radiation which is covariant and not based on approximations. The proposal they finally came up with relies, however, on an idealization. The solutions to Einstein’s field equations were as...

متن کامل

Anisotropic surface meshing with conformal embedding

This paper introduces a parameterization-based approach for anisotropic surface meshing. Given an input surface equipped with an arbitrary Riemannian metric, this method generates a metric-adapted mesh with user-specified number of vertices. In the proposed method, the edge length of the input surface is directly adjusted according to the given Riemannian metric at first. Then the adjusted surf...

متن کامل

Einstein Metrics with Prescribed Conformal Infinity on 4-manifolds

This paper considers the existence of conformally compact Einstein metrics on 4manifolds. A reasonably complete understanding is obtained for the existence of such metrics with prescribed conformal infinity, when the conformal infinity is of positive scalar curvature. We find in particular that general solvability depends on the topology of the filling manifold. The obstruction to extending the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: General Relativity and Gravitation

سال: 2010

ISSN: 0001-7701,1572-9532

DOI: 10.1007/s10714-010-1117-y